5120e

Product Information

FPC2 - Series

Ultrasonic Energy Meter

FPC2 Ultrasonic Energy Meter uses the latest digital technology and low-voltage broadband pulse transmission. With distinctive features such as high accuracy, high reliability, the energy meter provides long-term and no-drift measurements and sorts operating software to adjust parameters according to changing conditions.

Pipe Material

Carbon Steel

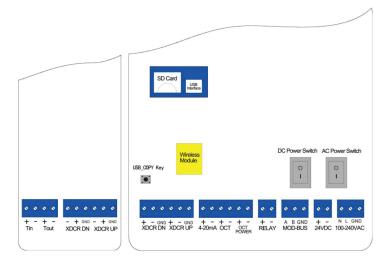
Stainless Steel

PVC

Copper

Applications

Building Monitoring System (BMS)


HVAC

Building industry

Energy monitoring and auditing

Data centre

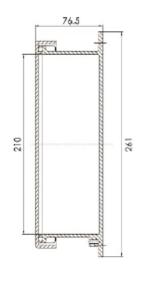
Wiring Diagram

Measuring Principle

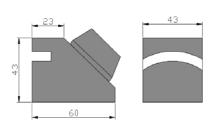
Both transducers are ultrasonic transmitter and receivers, which are clamped on outside of pipe at specific distance. Different pipe and liquid medium have different mounting method (V, Z or W method).

As ultrasonic wave travels faster downstream than upstream, by comparing the time difference, we can calculate the velocity of liquid flow in the pipe.

Ultrasonic Energy Meter



Model Description Name Transient Time Ultrasonic Energy Meter Installation Wall Mount, fixed installation -12...+12m/s (-40...+40ft/s) bi-directional Range Accuracy ±1% of reading Repeatability 0.2% of reading Sensitivity 0.0003m/s (0.001ft/s) FPC2 Power Supply 90...240V AC 50/60 Hz, 5A max. / 10...28V DC, 2.5A max. Output 4...20mA, Frequency, Relay, RS485 (MODBUS), USB, built-in data logging function **Optional Output** HART+ (4...20mA), ZigBee, GPRS Transducer DN40...DN1000, other size on request Media Temp. -40°C...+121°C Cable Length 6m, other length on request

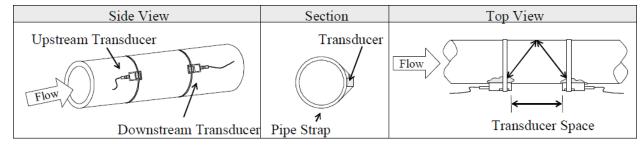

Ordering Code Description FPC2-S-U-S / PC-M-N-S-S-xxxx-6m-PT1000				
FPC2	Time Transient Ultrasonic Energy Meter			
S	Standard Housing (Ex, explosion proof housing on request)			
U	Univeral Power Supply (90240V AC 50/60 Hz, 5A max. / 1028V DC, 2.5A max.)			
S	Standard output (420mA, Frequency, Relay, RS485 (MODBUS), USB, built-in data logging function)			
PC-M-S-N-S-xx	xx-6m			
PC	Pipe Clamp parameters			
М	Medium size clamp, for DN40DN1000			
S	Standard temperature range, -40°C+121°C			
N	Standard clamp, no magnet on transducer			
xxxx	Pipe size, e.g. 0100 for DN100, 0250 for DN250 etc.			
6m	Cable Length, standard 6m (other cable length on request)			
PT1000	PT1000 Class B duct insertion type temperature sensor			

Dimensions

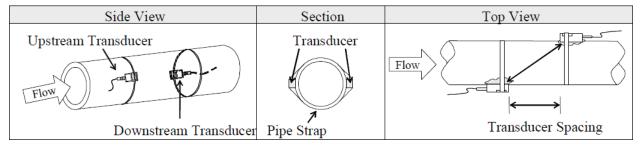
Model Selection Guide

Standard Transducer

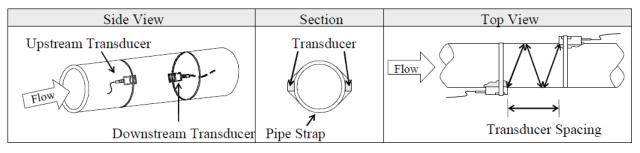
Product Information


FPC2 - Series

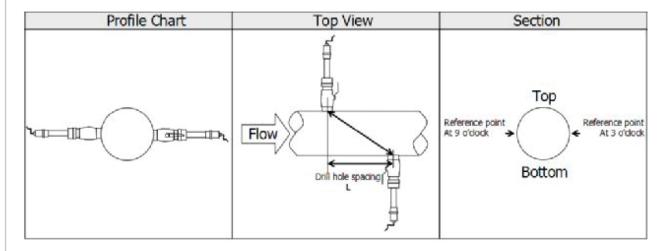
Ultrasonic Energy Meter



Clamp-on Ultrasonic Flow meters are installed simply by applying coupling compound on the bottom of transducer and fixing them on the pipe.


V method installation on pipe size: 25mm to 400mm

Z method installation on pipe size: 100mm to 3000mm



N method installation on pipe size: <50mm (Not recommended for most applications)

Insertion type transducer can be installed under flow conditions and pressure by hot-tapping them into pipe via isolation ball valve. Insertion type transducer are used mainly on large size pipe (>3000mm), concrete pipe, heavily corroded pipe and aged pipes which need direct contact with liquid to be measured.

The interference of pipe material is eliminated from calculation of spacing between transducer.

Transducer	Spacing	Installation Method and Pipe Size	
W Style	T + 34mm	50mm5000mm	

Product Information

FPC2 - Series

Ultrasonic Energy Meter

When selecting a measurement location, it is important to select an area where fluid flow profile is fully developed in order to guarantee a high accuracy measurement. Use following guidelines to select a suitable installation location:

Choose a section of pipe that is always full of fluid, such as vertical pipe with flow in upward direction or a full horizontal pipe.

Ensure enough straight pipe length at least equal to the figure shown below for upstream and downstream transducer installation:

Name	Straight length of upstream piping	Straight length of downstream piping	
90° bend	L ≥ 10D Detector	L≥5D 	
Tee	10D min	L ≥ 10D	
Diffuser	0.5D min 200 → 0.5D min	L≥5D → • • • • • • • • • • • • • • • • • • •	
Reduce	← L≥10D 	L ≥5D >	
Valve	Flow controlled upstream	Flow controlled downstream	
Pump	Check valve Stop valve L≥50D		

Ensure that the pipe surface temperature at the measuring location is within transducer temperature limits.

Consider surface condition of pipe carefully. Please, if possible, select a section of pipe where the pipe inside is free of excessive corrosion or scaling.

Selection of Installation Location