

Electro-hydraulic actuators for valves

with a 20 mm stroke

- SKD62...: Operating voltage AC 24 V, control signal DC $0 . . .10 \mathrm{~V}$, $4 \ldots 20 \mathrm{~mA}$ or $0 \ldots 1000 \Omega$, with spring-return function
- SKD60: as SKD62, but without spring-return function
- SKD62U: as SKD62, but UL-approved
- SKD62UA: as SKD62U, but with enhanced functions (stroke limit control, sequence control with adjustable start point and operating range, and choice of direction of operation)
- Choice of linear or equal-percentage flow characteristic
- Position feedback
- Stroke calibration
- LED status indication
- Override control
- Manual adjuster and position indicator
- Positioning force 1000 N
- For direct mounting on valves; no adjustments required
- Additional functions with auxiliary switch, stem heater and mechanical stroke inverter
- SKD62U and SKD62UA are UL-approved

For the operation of Siemens two-port and three-port valves, types VVF..., VVG..., VPF..., VXF... and VXG... with a 20 mm stroke.

- Field of application in accordance with IEC 721-3-3 Class 3K5
- Ambient temperatures: $-15 \ldots+50^{\circ} \mathrm{C}$
- Temperature of medium in the connected valve: $-25 \ldots+140^{\circ} \mathrm{C}$ $>140^{\circ} \mathrm{C}$: use type SKB... actuators $<0^{\circ} \mathrm{C}$: type ASZ6.5 stem heater required

Functions

- Electro-hydraulic actuators; no maintenance required
- Pump, pressure cylinder and piston to open valve
- Return spring and bypass valve to close valve
- Manual adjuster and position indication
- SKD62... with spring-return function to DIN 32730
- Standard electronics:
- Choice of control signal (DC 0 ... $10 \mathrm{~V} / 4 \ldots 20 \mathrm{~mA} / 0$... 1000Ω)
- Choice of flow characteristic (equal-percentage / linear)
- Position feedback
- Stroke calibration
- LED status indication
- Override control via terminal Z
- SKD62UA enhanced functions:
- Stroke limit control
- Sequence control with adjustable starting position and operating range
- Choice of direction of operation (direct acting / reverse acting)
- Mounting space for auxiliary switch
- Stem heater can be fitted if required
- Mechanical stroke inverter can be installed if required
- SKD62U and SKD62UA actuators are UL-approved

Types

Versions with standard electronics

Version with enhanced electronics

Type	Operating voltage	Control (Control signal)	Spring-return		Running time		Enhanced function
			Function	Time	Opening	Closing	
$\begin{aligned} & \text { SKD62 } \\ & \text { SKD62U * } \end{aligned}$	AC 24 V	$\begin{gathered} \text { DC } 0 \ldots 10 \mathrm{~V} \\ 20 \mathrm{~mA} \\ \text { or } \\ 0 \ldots 1000 \Omega \end{gathered}$	Yes	15 s	30 s	15 s	No
SKD60			No	--			
SKD62UA *	AC 24 V	$\begin{gathered} \text { DC } 0 \ldots 10 \mathrm{~V}, \\ 4 \ldots 20 \mathrm{~mA} \\ \text { or } \\ 0 \ldots 1000 \Omega \end{gathered}$	Yes	15 s	30 s	15 s	Stroke limit control Sequence control Signal inversion

* UL-approved versions

Accessories

Type	Description
ASC1.6	Auxiliary switch
ASZ6.5	Stem heater AC 24 V
ASK50	Mechanical stroke inverter

When ordering please specify the quantity, product name and type code.

Example: 1 actuator, type SKD62 and
 1 auxiliary switch ASC1.6

Delivery The actuator, valve and accessories are supplied in separate packaging and not assembled prior to delivery.

Compatibility

Controllers

Mounting on linear valves

The actuators can be driven by all control systems which have an AC 24 V SELV/PELV supply and operate with DC $0 \ldots 10 \mathrm{~V}$ or $4 \ldots 20 \mathrm{~mA}$ signals.

The actuators are suitable for operation of the following Siemens two-port and three-port valves with a 20 mm stroke:

Valve	DN	PN	Data sheet
Two-port valves VV... (control valves or safety shut-off valves):			
VVF21... (Flange)	$25 \ldots 80 \mathrm{~mm}$	6 bar	4310
VVF31... (Flange)	$25 \ldots 80 \mathrm{~mm}$	10 bar	4320
VVF40... (Flange)	$15 . .80 \mathrm{~mm}$	16 bar	4330
VVF41... (Flange)	50 mm	16 bar	4340
VVG41... (Screwed)	$15 . . .50 \mathrm{~mm}$	16 bar	4363
VVF52... (Flange)	$15 . . .40 \mathrm{~mm}$	25 bar	4373
VVF61... (Flange)	15 and 25 mm	40 bar	4382
Three-port valves, VX... (control valves for mixing and distribution)			
VXF21... (Flange)	$25 \ldots 80 \mathrm{~mm}$	6 bar	4410
VXF31... (Flange)	$25 . . .80 \mathrm{~mm}$	10 bar	4420
VXF40... (Flange)	$15 . . .80 \mathrm{~mm}$	16 bar	4430
VXF41... (Flange)	$15 \ldots 50 \mathrm{~mm}$	16 bar	4440
VXG41... (Screwed)	$15 \ldots 50 \mathrm{~mm}$	16 bar	4463
VXF61... (Flange)	15 and 25 mm	40 bar	4482
Combination valve VP... (Two-port valve with integrated differential pressure controller)			
VPF52... (Flange)	$15 . . .40 \mathrm{~mm}$	25 bar	4374

For admissible differential pressures $\Delta \mathrm{p}_{\max }$ and closing pressures $\Delta \mathrm{p}_{\mathrm{s}}$, refer to the relevant valve data sheets

Third-party valves with strokes between 6 and 20 mm can be motorized, provided they are «closed with the de-energized» fail-safe mechanism and provided that the necessary mechanical coupling is available.
We recommend that you contact local Siemens office for the necessary information.

Principles of electro-hydraulic actuators

Schematic diagram of the SKD... actuator electronics

1 Manual adjuster
2 Pressure cylinder
3 Piston
4 Reservoir
5 Pressure chamber
6 Pump
7 Return spring
8 Bypass valve
9 Coupling
10 Valve stem
11 Inner valve
12 Position indicator (0 to 1)

- Signal input Y increasing: The pump (6) forces hydraulic oil from the reservoir (4) into the pressure chamber (5) thereby generating the stroke: the valve stem (10) is retracted and the valve plug opens (11).
- Signal input Y decreasing: The bypass valve (8) opens, allowing the hydraulic oil to flow back from the pressure chamber (5) into the reservoir (4) via the return spring (7). The valve stem (10) extends and the valve plug closes (11).
- Signal input Y constant: The actuator and valve hold the current stroke position.

Spring-return function

All SKD62... actuators are factory-fitted with a spring-return function, so that if the control signal or power supply fails, the actuator will return to the «0\%» stroke position. The SKD60 is without spring-return function. In case of a power failure the actuator remains in the current stroke position.

Override control

The override control input (Z) has three modes of operation:

No function	Override with $0 . . .1000 \Omega$
 - Z-contact not wired - Valve stroke follows control signal Y	 - Z-contact connected to M via resistor R - Linear or equal-percentage characteristic - Starting position at 50Ω / end position at 900Ω - Y-input has no effect
Valve fully opened	Valve fully closed
- Z-contact connected directly to G - Y-input has no effect	- Z-contact connected directly to G0 - Y-input has no effect

Stroke calibration

The Z-modes shown assume the factory-setting «direct-acting».
To determine the stroke positions 0 and 100% in the valve, calibration is required when the valve/actuator are commissioned for the first time. For this purpose, the actuator must be mechanically connected to a Siemens valve (see «Compatibility") and must have a supply voltage of AC 24 V . The calibration procedure can be repeated as often as necessary.

Before starting calibration, ensure that the manual adjuster is set to «Automatic» in order to register the actual values.

There is a slot on the printed circuit boards of the actuators. To initiate the calibration procedure, the contacts inside this slot must be short-circuited (e.g. with a screwdriver).

Automatic calibration proceeds as follows:

- Actuator runs to the «0 stroke» position (1), valve closes, green LED flashes.
- Actuator then runs to the «100 stroke» position (2), valve opens, green LED flashes.
- Measured values are stored.

The calibration procedure is finish, and the green LED now glows steadily (normal operation).

- The actuator now moves to the position defined
 by control signal Y or Z (3).
- Throughout this procedure, output U is inactive, i.e. the values only represent actual positions when the green LED stops flashing and remains on continuously.

LED	Display	Function	Action
Green	On	\bullet Normal operation	Automatic operation, no problems
	Flashing	\bullet Stroke calibration in progress	Wait until calibration is complete (LED stops flashing)
Red	On	\bullet Faulty stroke calibration	Check mounting Re-start stroke calibration (by short-circuiting calibration slot) Replace electronics
	Flashing	\bullet Inner valve jammed	Check the valve
	Off	\bullet No power supply	Check mains
		\bullet Faulty electronics	Replace electronics

Standard electronics
SKD62
SKD60
SKD62U

Enhanced electronics

SKD62UA

* Factory settings all switches OFF

Selecting the direction of operation

- With normally-closed valves, «direct-acting» means that with a signal input of 0 V , the valve closes (applies to all Siemens valves listed under «Compatibility» on page 3)
- With normally-open valves, «direct-acting» means that with a signal input of 0 V , the valve is open.

Note The mechanical spring-return function is not affected by the direction of operation selected.

Stroke limit control and sequence control

Setting the stroke limit control			
The rotary switches LO and UP can be used to apply an upper and lower limit to the stroke in increments of 3%, up to a maximum of 45%			
Position of LO	Lower stroke limit	Position of UP	Upper stroke limit
0	0 \%	0	100 \%
1	3 \%	1	97 \%
2	6 \%	2	94 \%
3	9 \%	3	91 \%
4	12 \%	4	88 \%
5	15 \%	5	85 \%
6	18 \%	6	82 \%
7	21 \%	7	79 \%
8	24 \%	8	76 \%
9	27 \%	9	73 \%
A	30%	A	70 \%
B	33 \%	B	67 \%
C	36 \%	C	64 \%
D	39%	D	61 \%
E	42 \%	E	58 \%
F	45 \%	F	55 \%

Setting the sequence control			
The rotary switches LO and UP can be used to determine the starting point or the operating range of a sequence.			
Position of LO	Starting point for sequence control	Position of UP	Operating range of sequence control
0	0 V	0	10 V
1	1 V	1	3 V *
2	2 V	2	3 V *
3	3 V	3	3 V *
4	4 V	4	4 V
5	5 V	5	5 V
6	6 V	6	6 V
7	7 V	7	7 V
8	8 V	8	8 V
9	9 V	9	9 V
A	10 V	A	10 V
B	11 V	B	11 V
C	12 V	C	12 V
D	13 V	D	13 V
E	14 V	E	14 V
F	15 V	F	15 V

* The smallest adjustment is 3 V ; control with $0 \ldots 30 \mathrm{~V}$ is only possible via Y .

Accessories

ASC1.6 auxiliary switch

- Switching point 0 ... 5% stroke

ASZ6.5 stem heater

- For media below $0^{\circ} \mathrm{C}$
- Mount between valve and actuator

The actuators must be electrically connected in accordance with local wiring regulations and with the wiring diagram on page 11.
. Regulations and requirements designed to ensure the safety of people and property must be observed at all times.
The ASZ6.5 stem heater has a heat output of 30 VA and is required to keep the valve stem free of ice in the cooling range $0^{\circ} \mathrm{C} . . .-25^{\circ} \mathrm{C}$. In this case, in order to ensure adequate air circulation, the actuator bracket and the valve stem must not be insulated. Physical contact with unprotected hot components can cause burns. Failure to observe the above advice can result in accidents or fire.

The admissible temperatures (see «Application» and «Technical data») must be observed.

Mounting instructions

Orientation

Instructions for fitting the actuator to the valve are bypacked in the actuator packaging. The instructions for accessories are enclosed with the accessories themselves.

Commissioning notes

When commissioning the system, check the wiring and functions.

Coupling fully retracted \rightarrow stroke = 0\%

Coupling fully extended \rightarrow stroke $=100 \%$

The manual adjuster must be rotated counterclockwise to the end stop, i.e. until the red indicator marked «MAN» is no longer visible. This causes the Siemens valves, types VVF..., VVG..., VPF..., VXF... and VXG... to close (stroke $=0 \%$).

« MAN »
Manual operation

«AUTO »
Automatic operation

\ When servicing the valve:

- Switch OFF the pump and power supply, close the main shut-off valves in the pipework, release pressure in the pipes and allow them to cool down completely. If necessary, disconnect electrical connections from terminals.
- The valve must be re-commissioned only with the actuator correctly assembled.

Disposal

The actuator includes electrical and electronic components and must not be disposed of as domestic waste.

Current local legislation must be observed.

Warranty

The application-related technical data ($\Delta \mathrm{p}_{\max }, \Delta \mathrm{p}_{\mathrm{s}}$, leakage, noise levels and service life) is valid for the Siemens actuators only in conjunction with the Siemens valves listed in the section on «Compatibility».
Before using these actuators with third-party valves, written approval must be obtained from Siemens Building Technologies. A failure to obtain this approval invalidates any guarantee.

Technical data

Power supply	Operating voltage (SELV, PELV)	AC $24 \mathrm{~V} \pm 20 \%$
	Frequency	50 or 60 Hz
	Power consumption	$17 \mathrm{VA} / 12 \mathrm{~W}$
	External supply cable fuse	Min. 1 A slow blow, max. 10 A slow blow
Operating data	Type of control (proportional)	$\text { DC } 0 \ldots 10 \mathrm{~V}, \mathrm{DC} 4 \ldots 20 \mathrm{~mA}$ or $0 \ldots 1000 \Omega$
	Running time at 50 Hz	Opening: $30 \mathrm{~s} / \mathrm{Closing}$: 15 s
	Spring-return time (closing)	15 s
	Nominal stroke	20 mm
	Positioning force	1000 N
	Flow characteristic	Linear / equal percentage can be selected *
Signal inputs	Terminal Y	
	Voltage	DC $0 \ldots 10 \mathrm{~V}$
	Input impedance	$100 \mathrm{k} \Omega$
	Current	DC $4 \ldots 20 \mathrm{~mA}$
	Input impedance	240Ω
	Signal resolution	<1\%
	Hysteresis	1\%
	Terminal Z	
	Resistance	$0 \ldots 1000 \Omega$
	Override control functions	
	Z not connected	No function (priority at Terminal Y)
	Z connected directly to G	Max. stroke 100%
	Z connected directly to G0	Min. stroke 0 \%
	Z connected to M via $0 \ldots 1000 \Omega$	Linear / equal percentage

* in conjunction with valves listed under «Compatibility» on page 3

Signal outputs	Terminal U	
	Voltage	DC $0 \ldots 9.8 \mathrm{~V} \pm 2$ \%
	Load impedance	$>500 \Omega$
	Current	DC $4 . . .19 .6 \mathrm{~mA} \pm 2$ \%
	Load impedance	<500 Ω
General ambient conditions	Maximum admissible temperature of medium in the connected valve:	$\leq 140^{\circ} \mathrm{C}$
	Operation	To IEC 721-3-3
	Environmental conditions	Class 3K5
	Temperature	$-15 \ldots+50{ }^{\circ} \mathrm{C}$
	Humidity	$5 \ldots 95 \%$ rh
	Transport	To IEC 721-3-2
	Environmental conditions	Class 2K3
	Temperature	$-30 \ldots+65{ }^{\circ} \mathrm{C}$
	Humidity	<95 \% rh
	Storage	To IEC 721-3-1
	Environmental conditions	Class 1K3
	Temperature	$-15 \ldots+50^{\circ} \mathrm{C}$
	Humidity	$5 \ldots 95 \%$ rh
Industry standards	Meets the requirements for CE marking in EMC Directive Low Voltage Directive	$\begin{aligned} & \text { 89/336/EEC } \\ & \text { 73/23/EEC } \end{aligned}$
	```Electromagnetic compatibility Emitted interference Interference immunity```	EN 61000-6-3 Residential EN 61000-6-2 Industrial
	Product standards for automatic electric controls	EN 60 730-2-14
	C-tick	N474
	Protection standard	IP54 to EN 60529
	Protection class	III to EN 60730
	UL approval	UL 873
Dimensions		See «Dimensions»
Weight	SKD62, SKD60	3.60 kg (including packaging)
	SKD62U, SKD62UA	3.85 kg (including packaging)
	ASK50 stroke inverter	1.10 kg (including packaging)
Materials	Actuator housing and bracket	Die-cast aluminum
	Housing box and manual adjuster	Plastic
Cable glands	SKD62, SKD60	Pg 11 (4x)
	SKD62U, SKD62UA	Pg 16 (4x)
SKD62UA enhanced functions		
Direction of operation	Direct acting / reverse acting	$\begin{aligned} & \hline \text { DC } 0 \ldots 10 \mathrm{~V} / \mathrm{DC} 10 \ldots 0 \mathrm{~V} \\ & \mathrm{DC} 4 \ldots 20 \mathrm{~mA} / \mathrm{DC} 20 \ldots 4 \mathrm{~mA} \\ & 0 \ldots 1000 \Omega / 1000 \ldots 0 \Omega \\ & \hline \end{aligned}$
Stroke limit control	Range of lower limit	0 ... $45 \%$ adjustable
	Range of upper limit	$100 . .55 \%$ adjustable
Sequence control	Terminal Y	
	Starting point of sequence	0... 15 V adjustable
	Operating range of sequence	3... 15 V adjustable
Accessories		
ASC1.6 auxiliary switch	Switching capacity of auxiliary switch	AC $24 \mathrm{~V}, 10 \mathrm{~mA} . . .4$ (2) A
ASZ6.5 stem heater	Operating voltage	AC $24 \mathrm{~V} \pm 20$ \%
	Power consumption (heat output)	30 VA



B1 Sensor
F1 Temperature limiter
N1 Controller
Y1 Actuator

Connection terminals

GO	Operating voltage AC 24 V System neutral (SN)
G	-Operating voltage AC 24 V System potential (SP)
Y	-Control signal DC 0 ... 10 (30) V or DC $4 \ldots 20 \mathrm{~mA}$
M	-Measuring neutral (= G0)
U	-Position indication DC 0 ... 10 V or DC $4 \ldots 20 \mathrm{~mA}$
Z	- Override input (functions see page 5)

ASC1.6
auxiliary switch


All dimensions in mm


* Height of actuator from valve plate without stroke inverter ASK50 $\mathbf{= 3 0 0} \mathbf{~ m m}$ Height of actuator from valve plate with stroke inverter ASK50 $=\mathbf{3 5 7} \mathbf{~ m m}$
** The hole diameter on the SKD62U... actuators corresponds to the Pg16 gland.
A $=>100 \mathrm{~mm}$ / Minimum clearance from ceiling or wall for mounting,
$\boldsymbol{\Delta} \mathbf{A}=>200 \mathrm{~mm}$ l connection, operation, maintenance etc.

ASK50 stroke inverter


* Maximum stroke $=20 \mathrm{~mm}$

